Механика 101. Тело брошено вертикально вверх с начальной скоростью u0 = 4м/с. Когда оно достигло верхней точки полета из того же начального пункта, с той же начальной скоростью u0 вертикально вверх брошено второе тело. На каком расстоянии h от начального пункта встретятся тела? Сопротивление воздуха не учитывать.
102. Материальная точка движется прямолинейно с ускорением а = 5м/с2. Определить, на сколько путь, пройденный точкой в п-ю секунду, будет больше пути, пройденного в предыдущую секунду. Принять u0 = 0.
103. Две автомашины движутся по дорогам, угол между которыми α=60°. Скорость автомашин u1 = 54 км/ч и u2 = 72 км/ч. С какой скоростью u удаляются машины одна от другой?
104. Материальная точка движется прямолинейно с начальной скоростью u1 =10 м/с и постоянным ускорением а = - 5м/с2. Определить, во сколько раз путь Δs, пройденный материальной точкой, будет превышать модуль ее перемещения Δr спустя t=4с после начала отсчета времени.
105. Велосипедист ехал из одного пункта в другой. Первую треть пути он проехал со скоростью u1 = 18 км/ч. Далее половину оставшегося времени он ехал со скоростью u2 =22 км/ч, после чего до конечного пункта он шел пешком со скоростью u3 = 5 км/ч. Определить среднюю скорость <u> велосипедиста.
106. Тело брошено под углом α=30° к горизонту со скоростью u0 = 30 м/с. Каковы будут нормальное ап и тангенциальное аτ ускорения тела через время t= 1 с после начала движения?
107. Материальная точка движется по окружности с постоянной угловой скоростью ω = π/6 рад/с. Во сколько раз путь Δs, пройденный точкой за время t=4 с, будет больше модуля ее перемещения Δr? Принять, что в момент начала отсчета времени радиус-вектор r, задающий положение точки на окружности, относительно исходного положения был повернут на угол φ0=π/3 рад.
108. Материальная точка движется в плоскости хоу согласно уравнениям x = A1+B1 t+C1 t2 и y = A2+B2 t+ +С2t2, где B1 = 7м/c, С= –2м/с2, В2 = –1м/с, С2= 0,2 м/с2. Найти модули скорости и ускорения точки в момент времени t = 5c.
109. По краю равномерно вращающейся с угловой скоростью ω=1 рад/с платформы идет человек и обходит платформу за время t = 9,9 с. Каково наибольшее ускорение а движения человека относительно Земли? Принять радиус платформы R = 2м.
110. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением ε. Определить тангенциальное ускорение аτ точки, если известно, что за время t = 4с она совершила три оборота и в конце третьего оборота ее нормальное ускорение аn=2,7 м/с2.
111. При горизонтальном полете со скоростью v = 250 м/с снаряд массой m = 8 кг разорвался на две части. Большая часть массой m1 = 6 кг получила скорость u1 = 400 м/с в направлении полета снаряда. Определить модуль и направление скорости и2 меньшей части снаряда.
112. С тележки, свободно движущейся по горизонтальному пути со скоростью u1 = 3 м/с, в сторону, противоположную движению тележки, прыгает человек, после чего скорость тележки изменилась и стала равной u1=4 м/с. Определить горизонтальную составляющую скорости u2x человека при прыжке относительно тележки. Масcа тележки m1 = 210 кг, масса человека m2=70 кг.
113. Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом α= 30° к линии горизонта. Определить скорость u2 отката платформы, если снаряд вылетает со скоростью и1=480 м/с. Масса платформы с орудием и снарядами m2=18т, масса снаряда m1 =60 кг.
114. Человек массой m1=70 кг, бегущий со скоростью u1 = 9 км/ч, догоняет тележку массой m2=190 кг, движущуюся со скоростью u2 = 3,6 км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка с человеком? С какой скоростью будет двигаться тележка с человеком, если человек до прыжка бежал навстречу тележке?
115. Конькобежец, стоя на коньках на льду, бросает камень массой m1 = 2,5 кг под углом α = 30° к горизонту со скоростью u = 10 м/с. Какова будет начальная скорость u 0 движения конькобежца, если масса его m2 = 60 кг? Перемещением конькобежца во время броска пренебречь.
116. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса его m1 = 60 кг, масса доски m2 = 20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) v = 1 м/с? Массой колес и трением пренебречь.
117. Снаряд, летевший со скоростью u = 400 м/с, в верхней точке траектории разорвался на два осколка. Меньший осколок, масса которого составляет 40% от массы снаряда, полетел в противоположном направлении со скоростью и1 = 150 м/с. Определить скорость u2 большего осколка.
118. Две одинаковые лодки массами m = 200кг каждая (вместе с человеком и грузами, находящимися в лодках) движутся параллельными курсами навстречу друг другу с одинаковыми скоростями v = 1 м/с. Когда лодки поравнялись, то с первой лодки на вторую и со второй на первую одновременно перебрасывают грузы массами m1 = 200 кг. Определить скорости u1 и u2 лодок после перебрасывания грузов.
119. На сколько переместится относительно берега лодка длиной l = 3,5 м и массой m1 = 200 кг, если стоящий на корме человек массой m2=80 кг переместится на нос лодки? Считать лодку расположенной перпендикулярно берегу.
120. Лодка длиной l = 3 м и массой т = 120 кг стоит на спокойной воде. На носу и корме находятся два рыбака массами m1 = 60 кг и m2 = 90 кг. На сколько сдвинется лодка относительно воды, если рыбаки поменяются местами?
121. В деревянный шар массой m1 = 8 кг, подвешенный на нити длиной l = 1,8 м, попадает горизонтально летящая пуля массой m2 = 4 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол α=3°? Размером шара пренебречь. Удар пули считать прямым, центральным.
122. По небольшому куску мягкого железа, лежащему на наковальне массой m1 = 300 кг, ударяет молот массой m2 = 8 кг. Определить КПД h удара, если удар неупругий. Полезной считать энергию, затраченную на деформацию куска железа.
123. Шар массой m1 = 1 кг движется со скоростью u1 = 4 м/с и сталкивается с шаром массой m2 = 2 кг, движущимся навстречу ему со скоростью u2 = 3 м/с. Каковы скорости u1 и u2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным.
124. Шар массой m= 3 кг движется со скоростью υ1 = 2 м/с и сталкивается с покоящимся шаром массой m2= 5 кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным.
125. Определить КПД η неупругого удара бойка массой m1 = 0,5 т, падающего на сваю массой m2 = 120 кг. Полезной считать энергию, затраченную на вбивание сваи.
126. Шар массой m1 =4 кг движется со скоростью v1 = 5 м/с и сталкивается с шаром массой m2 = 6 кг, который движется ему навстречу со скоростью v2 = 2 м/с. Определить скорости u1 и u2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.
127. Из ствола автоматического пистолета вылетела пуля массой m1 = 10 г со скоростью v = 300 м/с. Затвор пистолета массой m2 = 200 г прижимается к стволу пружиной, жесткость которой k = 25 кН/м. На какое расстояние отойдет затвор после выстрела? Считать, что пистолет жестко закреплен.
128. Шар массой m1 = 5 кг движется со скоростью v1 = 1 м/с и сталкивается с покоящимся шаром массой m2 = 2 кг. Определить скорости и1 и u2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.
129. Из орудия, не имеющего противооткатного устройства, производилась стрельба в горизонтальном направлении. Когда орудие было неподвижно закреплено, снаряд вылетел со скоростью u1 = 600 м/с, а когда орудию дали возможность свободно откатываться назад, снаряд вылетел со скоростью u2 = 580 м/с. С какой скоростью откатилось при этом орудие?
130. Шар массой т1 = 2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m2 большего шара. Удар считать абсолютно упругим, прямым, центральным.
131. Определить работу растяжения двух соединенных последовательно пружин жесткостями k1 = 400 Н/м и k2 = 250 Н/м, если первая пружина при этом растянулась на Δl=2 см.
132. Из шахты глубиной h = 600 м поднимают клеть массой т1 = 3,0 т на канате, каждый метр которого имеет массу m = 1,5 кг. Какая работа А совершается при поднятии клети на поверхность Земли? Каков коэффициент полезного действия η подъемного устройства?
133. Пружина жесткостью k = 500 Н/м сжата силой F = 100 Н. Определить работу А внешней силы, дополнительно сжимающей пружину еще на Δl = 2 см.
134. Две пружины жесткостью k1 = 0,5 кН/м и k2 = 1 кН/м скреплены параллельно. Определить потенциальную энергию П данной системы при абсолютной деформации Δl = 4 см.
135. Какую нужно совершить работу A, чтобы пружину жесткостью k = 800 Н/м, сжатую на х = 6 см, дополнительно сжать на Δυ = 8 см?
136. Если на верхний конец вертикально расположенной спиральной пружины положить груз, то пружина сожмется на Δl= 3 мм. На сколько сожмет пружину тот же груз, упавший на конец пружины с высоты h = 8 см?
137. Из пружинного пистолета с пружиной жесткостью k= 150 Н/м был произведен выстрел пулей массой т = 8 г. Определить скорость υ пули при вылете ее из пистолета, если пружина была сжата на Δx = 4 см.
138. Налетев на пружинный буфер, вагон массой m= 16 т, двигавшийся со скоростью u = 0,6 м/с, остановился, сжав пружину на Δl = 8 см. Найти общую жесткость k пружин буфера.
139. Цепь длиной l = 2 м лежит на столе, одним концом свисая со стола. Если длина свешивающейся части превышает , то цепь соскальзывает со стола. Определить скорость v цепи в момент ее отрыва от стола.
140. Какая работа А должна быть совершена при поднятии с земли материалов для постройки цилиндрической дымоходной трубы высотой h = 40 м, наружным диаметром D = 3,0 м и внутренним диаметром d = 2,0 м? Плотность материала ρ принять равной 2,8ּ103 кг/м3.
141. Шарик массой m = 60 г, привязанный к концу нити длиной l1 = l,2 м, вращается с частотой n1 = 2 c-1 , опираясь на горизонтальную плоскость. Нить укорачивается, приближая шарик к оси до расстояния l2 = 0,6 м. С какой частотой п2 будет при этом вращаться шарик? Какую работу А совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
142. По касательной к шкиву маховика в виде диска диаметром D = 75 см и массой т = 40 кг приложена сила F = 1 кН. Определить угловое ускорение ε и частоту вращения п маховика через время t = 10 с после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь.
143. На обод маховика диаметром D = 60 см намотан шнур, к концу которого привязан груз массой m = 2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t = 3 с приобрел угловую скорость ω = 9 рад/с.
144. Нить с привязанными к ее концам грузами массами m1 = 50 г и т2 = 60 г перекинута через блок диаметром D = 4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение ε = 1,5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь.
145. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению φ = At + Вt3, где А = 2 рад/с, В = 0,2 рад/с3.
Определить вращающий момент М, действующий на стержень через время t = 2 с после начала вращения, если момент инерции стержня J = 0,048 кгּм.
146. По горизонтальной плоскости катится диск со скоростью u = 8 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь s = 18 м.
147. Определить момент силы М, который необходимо приложить к блоку, вращающемуся с частотой п= 12 с-1, чтобы он остановился в течение времени Δt = 8 с. Диаметр блока D = 30 см. Массу блока m = 6 кг считать равномерно распределенной по ободу.
148. Блок, имеющий форму диска массой m = 0,4 кг, вращается под действием силы натяжения нити, к концам которой подвешены грузы массами т1 = 0,3 кг и m2 = 0,7 кг. Определить силы натяжения Т1 и T2 нити по обе стороны блока.
149. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой - вдоль вертикали вниз. Определить коэффициент k трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением а = 5,6 м/с2. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь.
150. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами т1 = 0,2 кг и m2 = 0,3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0,4 кг, а его ось движется вертикально вверх с ускорением а=2 м/с2? Силами трения и проскальзывания нити по блоку пренебречь.
151. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой т = 5 кг каждая. Расстояние от каждой гири до оси скамьи l = 70 см. Скамья вращается с частотой п1 = 1 с-1. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до l2 = 20 см? Момент инерции человека и скамьи (вместе) относительно оси J = 2,5 кгּм2.
152. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью ω1=4 рад/с. С какой угловой скоростью ω2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5 кгּм2. Длина стержня l = 1,8 м, масса m = 6 кг. Считать, что центр масс стержня с человеком находится на оси платформы.
153. Платформа в виде диска диаметром D = 3м и массой m1 = 180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью ω1 будет вращаться эта платформа, если по ее краю пойдет человек массой m2 = 70 кг со скоростью u = 1,8 м/с относительно платформы?
154. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол φ повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы т1 = 280 кг, масса человека m2 = 80 кг.
155. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью ω1 = 25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью ω2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол α=90°? Момент инерции человека и скамьи J равен 2,5 кгּм2, момент инерции колеса: J0 = 0,5 кгּм2.
156. Однородный стержень длиной l = 1,0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m = 7 г, летящая перпендикулярно стержню и его оси. Определить массу М стержня, если в результате попадания пули он отклонится на угол α=60°. Принять скорость пули u = 360 м/с.
157. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой n1 = 8 мин-1, стоит человек массой m=70 кг. Когда человек перешел в центр платформы, она стала вращаться с частотой n2 = 10 мин-1. Определить массу m2 платформы. Момент инерции человека рассчитывать как для материальной точки.
158. На краю неподвижной скамьи Жуковского диаметром D=0,8 м и массой m1=6 кг стоит человек массой m2=60 кг. С какой угловой скоростью ω начнет вращаться скамья, если человек поймает летящий на него мяч массой m=0,5 кг? Траектория мяча горизонтальна и проходит на расстоянии r=0,4 м от оси скамьи. Скорость мяча u =5 м/с.
159. Горизонтальная платформа массой m1=150 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n=8мин-1. Человек массой m2=70 кг стоит при этом на краю платформы. С какой угловой скоростью ω начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым, однородным диском, а человека - материальной точкой.
160. Однородный стержень длиной l=1,0 м и массой М=0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на , абсолютно упруго ударяет пуля массой m=5 кг, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол α=60°. Определить скорость пули.
161. Определить напряженность G гравитационного поля на высоте h=1000 км над поверхностью Земли. Считать известными ускорение g свободного падения у поверхности Земли и ее радиус R.
162. Какая работа А будет совершена силами гравитационного поля при падении на Землю тела массой m = 2 кг: 1) с высоты h = 1000 км; 2) из бесконечности?
163. Из бесконечности на поверхность Земли падает метеорит массой m=30 кг. Определить работу A, которая при этом будет совершена силами гравитационного поля Земли. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
164. С поверхности Земли вертикально вверх пущена ракета со скоростью υ=5 км/с. На какую высоту она поднимется?
165. По круговой орбите вокруг Земли обращается спутник с периодом T=90 мин. Определить высоту спутника. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
166. На каком расстоянии от центра Земли находится точка, в которой напряженность суммарного гравитационного поля Земли и Луны равна нулю? Принять, что масса Земли в 81 раз больше массы Луны и что расстояние от центра Земли до центра Луны равно 60 радиусам Земли.
167. Спутник обращается вокруг Земли по круговой орбите на высоте h = 520 км. Определить период обращения спутника. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
168. Определить линейную и угловую скорости спутника Земли, обращающегося по круговой орбите на высоте h=1000 км. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
169. Какова масса Земли, если известно, что Луна в течение года совершает 13 обращений вокруг Земли и расстояние от Земли до Луны равно 3,84ּ108 м?
170. Во сколько раз средняя плотность земного вещества отличается от средней плотности лунного? Принять, что радиус Rз Земли в 390 раз больше радиуса Rл Луны и вес тела на Луне в 6 раз меньше веса тела на Земле.
171. На стержне длиной l=30 см укреплены два одинаковых груза: один в середине стержня, другой - на одном из его концов. Стержень с грузами колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период Т простых гармонических колебаний данного физического маятника. Массой стержня пренебречь.
172. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых :x=A1sinw1t и y=A2cosw2t где A1=8 см, A2=4 см, ω1=ω2 с-1. Написать уравнение траектории и построить ее. Показать направление движения точки.
173. Точка совершает простые гармонические колебания, уравнение которых x=Asinwּt, где A=5 см, ω = 2 с-1. В момент времени, когда точка обладала потенциальной энергией П=0,1 мДж, на нее действовала возвращающая сила F=5 мН. Найти этот момент времени t.
174. Определить частоту ν простых гармонических колебаний диска радиусом R=20 см около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости.
175. Определить период Т простых гармонических колебаний диска радиусом R = 40 см около горизонтальной оси, проходящей через образующую диска.
176. Определить период Т колебаний математического маятника, если его модуль максимального перемещения Δr=18 см и максимальная скорость
umax=16 см/с.
177. Материальная точка совершает простые гармонические колебания так, что в начальный момент времени смещение х0=4 см, а скорость u0=10 см/с. Определить амплитуду А и начальную фазу φ0 колебаний, если их период Т=2 с.
178. Складываются два колебания одинакового направления и одинакового периода: x1=A1sinw1t и x2=A2sinw2(t+τ) где А1 = А2 = 3 см, ω1 = ω2 = π c-1, τ=0,5 c;. Определить амплитуду А и начальную фазу φ0 результирующего колебания. Написать его уравнение. Построить векторную диаграмму для момента времени t=0.
179. На гладком горизонтальном столе лежит шар массой М=200 г, прикрепленный к горизонтально расположенной легкой пружине с жесткостью k = 500 Н/м. В шар попадает пуля массой m=10 г, летящая со скоростью υ=300 м/с, и застревает в нем. Пренебрегая перемещением шара во время удара и сопротивлением воздуха, определить амплитуду А и период Т колебаний шара.
180. Шарик массой m=60 г колеблется с периодом T=2 с. В начальный момент времени смещение шарика x0=4,0 см и он обладает энергией E=0,02 Дж. Записать уравнение простого гармонического колебания шарика и закон изменения возвращающей силы с течением времени.
181. Частица движется со скоростью v = с/3, где с - скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы?
182. Протон с кинетической энергией Т = 3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс протона.
183. При какой скорости β (в долях скорости света) релятивистская масса любой частицы вещества в п = 3 раза больше массы покоя?
184. Определить отношение релятивистского импульса р электрона с кинетической энергией Т= 1,53 МэВ к комптоновскому импульсу m0c электрона.
185. Скорость электрона v = 0,8 с (где с - скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах, определить в тех же единицах кинетическую энергию Т электрона.
186. Протон имеет импульс р = 469 МэВ/с. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое?
187. Во сколько раз релятивистская масса m электрона, обладающего кинетической энергией Т = 1,53 МэВ, больше массы покоя m0?
188. Какую скорость β (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя?
189. Релятивистский электрон имел импульс р1 = m0c. Определить конечный импульс этого электрона (в единицах m0c), если его энергия увеличилась в п = 2 раза.
190. Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится n=2 раза.
Молекулярная физика
201. Определить количество вещества ν и число N молекул кислорода массой m = 0,5 кг.
202. Сколько атомов содержится в ртути: 1) количеством вещества ν= 0,2 моль; 2) массой m=1 г?
203. Вода при температуре t = 4°С занимает объем V= 1 см3. Определить количество вещества ν и число N молекул воды.
204. Найти молярную массу М и массу mм одной молекулы поваренной соли.
205. Определить массу mм одной молекулы углекислого газа.
206. Определить концентрацию п молекул кислорода, находящегося в сосуде вместимостью V=2л. Количество вещества ν кислорода равно 0,2 моль.
207. Определить количество вещества ν водорода, заполняющего сосуд объемом V=3 л, если концентрация молекул газа в сосуде n = 2ּ1018 м-3.
208. В баллоне вместимостью V=3л содержится кислород массой т = 10 г. Определить концентрацию п молекул газа.
209. Определить относительную молекулярную массу Мr: 1) воды; 2) углекислого газа; 3) поваренной соли.
210. Определить количество вещества ν и число N молекул азота массой m = 0,2 кг.
211. В цилиндр длиной l=1,6м, заполненный воздухом при нормальном атмосферном давлении p0, начали медленно вдвигать поршень площадью основания S = 200 см2. Определить силу F, действующую на поршень, если его остановить на расстоянии l1 =10 см от дна цилиндра.
212. В баллоне находится газ при температуре Т1 = 400 К. До какой температуры Т2 надо нагреть газ, чтобы его давление увеличилось в 1,5 раза?
213. Баллон вместимостью V = 20 л заполнен азотом при температуре T = 400 К. Когда часть газа израсходовали, давление в баллоне понизилось на Δр = 200кПа. Определить массу m израсходованного газа. Процесс считать изотермическим.
214. В баллоне вместимостью V=15 л находится аргон под давлением р1 = 600 кПа и при температуре T1 = 300 К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до р2 = 400 кПа, а температура установилась T2 = 260К. Определить массу m аргона, взятого из баллона.
215. Два сосуда одинакового объема содержат кислород. В одном сосуде давление р1 = 2МПа и температура T1 = 800 К, в другом р2 = 2,5 МПа, T2 = 200 К. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры Т =200 К. Определить установившееся в сосудах давление р.
216. Вычислить плотность ρ азота, находящегося в баллоне под давлением р = 2 МПа и имеющего температуру T =400 К.
217. Определить относительную молекулярную массу Мr газа, если при температуре Т= 154 К и давлении р=2,8 МПа он имеет плотность ρ = 6,1 кг/м3.
218. Найти плотность ρ азота при температуре Т = 400 К и давлении р = 2 МПа.
219. В сосуде вместимостью V=40 л находится кислород при температуре T =300 К. Когда часть газа израсходовали, давление в баллоне понизилось на Δр = 100 кПа. Определить массу m израсходованного кислорода. Процесс считать изотермическим.
220. Определить плотность ρ водяного пара, находящегося под давлением р = 2,5 кПа и имеющего температуру T=250 К.
221. Определить внутреннюю энергию U водорода, а также среднюю кинетическую энергию <ε> молекулы этого газа при температуре T =300 К, если количество вещества ν этого газа равно 0,5 моль.
222. Определить суммарную кинетическую энергию Ек поступательного движения всех молекул газа, находящегося в сосуде вместимостью V=3 л под давлением р=540 кПа.
223. Количество вещества гелия ν = 1,5 моль, температура Т= 120 К. Определить суммарную кинетическую энергию Ек поступательного движения всех молекул этого газа.
224. Молярная внутренняя энергия Um некоторого двухатомного газа равна 6,02 кДж/моль. Определить среднюю кинетическую энергию <εвр> вращательного движения одной молекулы этого газа. Газ считать идеальным.
225. Определить среднюю кинетическую энергию <ε> одной молекулы водяного пара при температуре Т =500 К.
226. Определить среднюю квадратичную скорость <u кв> молекулы газа, заключенного в сосуд вместимостью V=2л под давлением р = 200кПа. Масса газа m = 0,3 г.
227. Водород находится при температуре T=З00 К. Найти среднюю кинетическую энергию <εвр> вращательного движения одной молекулы, а также суммарную кинетическую энергию Ек всех молекул этого газа; количество водорода ν = 0,5 моль.
228. При какой температуре средняя кинетическая энергия <εп> поступательного движения молекулы газа равна 4,14ּ10-21 Дж?
229. В азоте взвешены мельчайшие пылинки, которые движутся так, как если бы они были очень крупными молекулами. Масса каждой пылинки равна 6ּ10-10г. Газ находится при температуре T=400 К. Определить средние квадратичные скорости <u кв>, а также средние кинетические энергии (εп) поступательного движения молекулы азота и пылинки.
230. Определить среднюю кинетическую энергию <εп> поступательного движения и <εвр> вращательного движения молекулы азота при температуре Т= 1 кВ. Определить также полную кинетическую энергию Ек молекулы при тех же условиях.
231. Определить молярную массу М двухатомного газа и его удельные теплоемкости, если известно, что разность cp-cv удельных теплоемкостей этого газа равна 260 Дж/(кгּК).
232. Найти удельные ср и сv, а также молярные Ср и СV теплоемкости углекислого газа.
233. Определить показатель адиабаты у идеального газа, который при температуре T=350 К и давлении р = 0,4 МПа занимает объем V = 300 л и имеет теплоемкость Cv=857 Дж/К.
234. В сосуде вместимостью V=6 л находится при нормальных условиях двухатомный газ. Определить теплоемкость СV этого газа при постоянном объеме.
235. Определить относительную молекулярную массу Мr и молярную массу М газа, если разность его удельных теплоемкостей ср-cv = 2,08 кДж/(кгּК).
236. Определить молярные теплоемкости газа, если его удельные теплоемкости сV = 10,4 кДж/(кгּК) и Ср= 14,6 кДж/(кгּК).
237. Найти удельные сV и ср и молярные СV и Ср теплоемкости азота и гелия.
238. Вычислить удельные теплоемкости газа, зная, что его молярная масса М = 4 10-3 кг/моль и отношение теплоемкостей CP/CV =1,67.
239. Трехатомный газ под давлением р = 240кПа и температуре t = 20°С занимает объем V=10 л. Определить теплоемкость Ср этого газа при постоянном давлении.
240. Одноатомный газ при нормальных условиях занимает объем V=5 л. Вычислить теплоемкость СV этого газа при постоянном объеме.
241. Найти среднее число (z) столкновений за время t= 1 с и длину свободного пробега <l> молекулы гелия, если газ находится под давлением р = 2кПа при температуре Т =200 К.
242. Определить среднюю длину свободного пробега <l> молекулы азота в сосуде вместимостью V=5 л. Масса газа m = 0,5 г.
243. Водород находится под давлением р = 20мкПа и имеет температуру T=300 К. Определить среднюю длину свободного пробега <l> молекулы такого газа.
244. При нормальных условиях длина свободного пробега <l> молекулы водорода равна 0,160 мкм. Определить диаметр d молекулы водорода.
245. Какова средняя арифметическая скорость <u > молекул кислорода при нормальных условиях, если известно, что средняя длина свободного пробега <l> молекулы кислорода при этих условиях равна 100 нм?
246. Кислород находится под давлением р=133 нПа при температуре T= 200 К. Вычислить среднее число <z> столкновений молекулы кислорода при этих условиях за время τ = 1с.
247. При каком давлении р средняя длина свободного пробега <l> молекул азота равна 1 м, если температура газа t=10° С?
248. В сосуде вместимостью V=5 л находится водород массой m = 0,5 г. Определить среднюю длину свободного пробега <l> молекулы водорода в этом сосуде.
249. Средняя длина свободного пробега <l> молекулы водорода при некоторых условиях равна 2 мм. Найти плотность ρ водорода при этих условиях.
250. В сферической колбе вместимостью V=3 л, содержащей азот, создан вакуум с давлением р = 80 мкПа. Температура газа T=250 К. Можно ли считать вакуум в колбе высоким?
Примечание. Вакуум считается высоким, если длина свободного пробега молекул в нем много больше линейных размеров сосуда.
251. Определить количество теплоты Q, которое надо сообщить кислороду объемом V=50 л при его изохорном нагревании, чтобы давление газа повысилось на Δр = 0,5 МПа.
252. При изотермическом расширении азота при температуре T=280 К объем его увеличился в два раза. Определить: 1) совершенную при расширении газа работу А; 2) изменение ΔU внутренней энергии; 3) количество теплоты Q, полученное газом. Масса азота m = 0,2 кг.
253. При адиабатном сжатии давление воздуха было увеличено от р1 = 50 кПа до р2 = 0,5 МПа. Затем при неизменном объеме температура воздуха была понижена до первоначальной. Определить давление р3 газа в конце процесса.
254. Кислород массой m = 200 г занимает объем V1 = 100 л и находится под давлением р1 = 200 кПа. При нагревании газ расширился при постоянном давлении до объема V2 = 300л, а затем его давление возросло до р3=500кПа при неизменном объеме. Найти изменение внутренней энергии ΔU газа, совершенную газом работу A и теплоту Q, переданную газу. Построить график процесса.
255. Объем водорода при изотермическом расширении при температуре T=З00 К увеличился в п = 3 раза. Определить работу A, совершенную газом, и теплоту Q, полученную при этом. Масса т водорода равна 200 г.
256. Азот массой m = 0,1 кг был изобарно нагрет от температуры T1 = 200 К до температуры T2 = 400 К. Определить работу A, совершенную газом, полученную им теплоту Q и изменение ΔU внутренней энергии азота.
257. Во сколько раз увеличится объем водорода, содержащий количество вещества ν= 0,4 моль при изотермическом расширении, если при этом газ получит количество теплоты Q = 800 Дж? Температура водорода T=300 К.
258. Какая работа А совершается при изотермическом расширении водорода массой m = 5 г, взятого при температуре T=290 К, если объем газа увеличивается в три раза?
259. Какая доля w1 количества теплоты Q, подводимого к идеальному двухатомному газу при изобарном процессе, расходуется на увеличение ΔU внутренней энергии газа и какая доля w2 - на работу А расширения? Рассмотреть три случая, если газ: 1) одноатомный; 2) двухатомный; 3) трехатомный.
260. Определить работу A, которую совершит азот, если ему при постоянном давлении сообщить количество теплоты Q = 21 кДж. Найти также изменение ΔU внутренней энергии газа.
261. Идеальный газ совершает цикл Карно при температурах теплоприемника T2 = 290 К и теплоотдатчика Т1 = 400 К. Во сколько раз увеличится коэффициент полезного действия η цикла, если температура теплоотдатчика возрастет до T1́ = 600 К?
262. Идеальный газ совершает цикл Карно. Температура Т1 теплоотдатчика в четыре раза (n = 4) больше температуры теплоприемника. Какую долю w количества теплоты, полученного за один цикл от теплоотдатчика, газ отдаст теплоприемнику?
263. Определить работу A2 изотермического сжатия газа, совершающего цикл Карно, КПД которого η = 0,4, если работа изотермического расширения равна А1= 8 Дж.
264. Газ, совершающий цикл Карно, отдал теплоприемнику теплоту Q2= 14 кДж. Определить температуру Т1 теплоотдатчика, если при температуре теплоприемника Т2 = 280 К работа цикла Л = 6 кДж.
265. Газ, являясь рабочим веществом в цикле Карно, получил от теплоотдатчика теплоту Q1 = 4,38 кДж и совершил работу A = 2,4 кДж. Определить температуру теплоотдатчика, если температура теплоприемника A2 = 273 К.
266. Газ, совершающий цикл Карно, отдал теплоприемнику 67% теплоты, полученной от теплоотдатчика. Определить температуру T2 теплоприемника, если температура теплоотдатчика T1 = 430 К.
267. Во сколько раз увеличится коэффициент полезного действия η цикла Карно при повышении температуры теплоотдатчика от T1 = 380 К до T2΄ = 560 Κ? Температура теплоприемника T2 = 280 К.
268. Идеальная тепловая машина работает по циклу Карно. Температура теплоотдатчика T1 = 500 К, температура теплоприемника T2 = 250 К. Определить термический КПД η цикла, а также работу А1 рабочего вещества при изотермическом расширении, если при изотермическом сжатии совершена работа A2 = 70 Дж.
269. Газ, совершающий цикл Карно, получает теплоту С1 = 84кДж. Определить работу A газа, если температура Т1 теплоотдатчика в три раза выше температуры Т2 теплоприемника.
270. В цикле Карно газ получил от теплоотдатчика теплоту Q1 = 500 Дж и совершил работу A = 100 Дж. Температура теплоотдатчика T1 = 400 K. Определить температуру T2 теплоприемника.
271. Найти массу m воды, вошедшей в стеклянную трубку с диаметром канала d = 0,8 мм, опущенную в воду на малую глубину. Считать смачивание полным.
272. Какую работу A надо совершить при выдувании мыльного пузыря, чтобы увеличить его объем от V1 = 8 см3 до V2=16 см3? Считать процесс изотермическим.
273. Какая энергия Е выделится при слиянии двух капель ртути диаметром d1 = 0,8 мм и d2=1,2 мм в одну каплю?
274. Определить давление р внутри воздушного пузырька диаметром d = 4 мм, находящегося в воде у самой ее поверхности. Считать атмосферное давление нормальным.
275. Пространство между двумя стеклянными параллельными пластинками с площадью поверхности S = 100 см2 каждая, расположенными на расстоянии l = 20мкм друг от друга, заполнено водой. Определить силу F, прижимающую пластинки друг к другу. Считать мениск вогнутым с диаметром d, равным расстоянию между пластинками.
276. Глицерин поднялся в капиллярной трубке диаметром канала d= 1 мм на высоту A = 20 мм. Определить поверхностное натяжение α глицерина. Считать смачивание полным.
277. В воду опущена на очень малую глубину стеклянная трубка с диаметром канала d= 1 мм. Определить массу т воды, вошедшей в трубку.
278. На сколько давление р воздуха внутри мыльного пузыря больше нормального атмосферного давления р0, если диаметр пузыря d = 5 мм?
279. Воздушный пузырек диаметром d = 2,2 mkm находится в воде у самой ее поверхности. Определить плотность р воздуха в пузырьке, если воздух над поверхностью воды находится при нормальных условиях.
280. Две капли ртути радиусом r =1,2 мм каждая слились в одну большую каплю. Определить энергию E, которая выделится при этом слиянии. Считать процесс изотермическим.